

NASA Aeronautics Research Institute

Full-scale Experimental Validation of Dynamic, Centrifugally Powered, Pneumatic Actuators for Active Rotor Blade Surfaces

Dr. Joseph Szefi, President Invercon, LLC

Luke Ionno, Aeronautical Engineer
Brian Cormier, Senior Flight Test & Product Design Engineer

Kaman Aerospace Corporation

NASA Aeronautics Research Mission Directorate (ARMD)
FY12 LEARN Phase I Technical Seminar
November 13-15, 2013

Outline

- Background
- The Innovation:
 - Centrifugally Powered Pneumatic Actuators

- Technical Approach / Results
- Planned Future Work

Background: Active Trailing Edge Flaps for Rotorcraft

NASA Aeronautics Research Institute

Serious Constraints in Rotorcraft Transportation

- Poor ride quality due to high levels of vibration
- Noise, restricted flight envelope
- Low fatigue life of structural components and high operation cost

Helicopter vibration sources

- Main rotor system Unique feature of helicopter
- Aerodynamic interaction between rotor and fuselage
- Tail rotor, engine and transmission

Active trailing edge flaps may offer active vibration control solution

- Tailor aerodynamics to counteract harmonic and non-harmonic disturbances
- With sufficient actuation levels, flaps may enable swashplateless rotor
 - No mechanical swashplate, reduced rotor complexity

Background: Active Trailing Edge Flaps for Rotorcraft

NASA Aeronautics Research Institute

Piezoelectric Stack-Based Actuators – Currently Preferred Actuation Approach

- Lee and Chopra (1999-2001): double-lever and bi-directional double-lever actuators
- Straub and Kennedy (2007): Double X-Frame actuator, Boeing
- Leconte and Hofinger (2004): ONERA, DLR, Eurocopter

Boeing - Double X-Frame Trailing Edge Flap Actuator

Whirl tested by Boeing in a fully instrumented MD 900 Explorer rotor in 2007

Eurocopter – Adaptive Dynamic System (ADASYS)

Flight tested by Eurocopter in BK117 in 2005

Drawbacks: Added blade weight, complex mechanical motion amplifiers, high voltage slip rings, and no more than ±3°

Double X-Frame Actuator

Eurocopter ADASYS Actuator

Outline

NASA Aeronautics Research Institute

☑ Background

- The Innovation:
 - Centrifugally Powered Pneumatic Actuators
- Technical Approach / Results
- Planned Future Work

Centrifugally Generated Pressure Differentials for Actuation

NASA Aeronautics Research Institute

Pressure Differential Created Across Two Hollow Tubes that Span the Blade

A Pressure Differential of ~7 psi Available for Actuation Along Entire Blade Length for K-MAX

Previous Testing: Full Scale Pressure Generation Test at Kaman

NASA Aeronautics Research Institute

Full-Scale Rotor Test Pressure Differential Experimentally Demonstrated: 7.5 PSI

2 Pressure Sensors on Root

2 Pressure Sensors on Tip

280 RPM, 24 ft. Radius Rotor

Previous Testing: Full Scale Pressure Generation Test at Kaman

Innovation: Centrifugally Powered Pneumatic Actuators

NASA Aeronautics Research Institute

Early Pneumatic Flap Actuator Design Concept

Innovation: Centrifugally Powered Pneumatic Actuators

NASA Aeronautics Research Institute

Actuator Co-located Spanwise with Flap

Innovation: Centrifugally Powered Pneumatic Actuators

NASA Aeronautics Research Institute

Design Concept Advanced under DARPA's Mission Adaptive Rotor Program

Outline

- **☑** Background
- **☑** The Innovation:
 - Centrifugally Powered Pneumatic Actuators

- Technical Approach / Results
- Planned Future Work

Phase I Technical Objectives

- Experimentally demonstrate full-scale, centrifugally powered actuation on modified K-MAX blade
 - K-MAX whirl rig at Kaman
 - First full-scale whirl test of actuation concept
 - First demonstration that differential can be used for actuation
- Demonstrate miniature pneumatic valve operation at ~500 g's
- Characterize actuator's dynamic performance limits
- Compare performance to existing on-blade active rotor technology

K-Max Blade Modifications

NASA Aeronautics Research Institute

Low Pressure Tube Installed in Outboard Blade Section

High Pressure Tube Installed in Servoflap Control Rod Volume

Pneumatic Actuator Design and Fabrication

Low Pressure Line

15

Pneumatic Actuator Design and Fabrication

Piezoelectric Valve Design, Fabrication and Testing

NASA Aeronautics Research Institute

Three-way Piezoelectric Valve Fabricated at Invercon

High Pressure

Valve Output Connected to Actuating Diaphragms

- Piezoelectric Valves Designed, Fabricated, and Tested at Invercon
- Tested in Modified Centrifuge Test Stand
- Successful Valve Operation Observed up to 500 g's

Actuator Spin Testing, October 4, 2013

Actuator Spin Testing, October 4, 2013

Actuator Performance Testing

Actuator Performance Testing

Actuator Performance Testing

Pneumatic Power Harvesting

NASA Aeronautics Research Institute

Pneumatic Rotary Vane Generator:

Diameter = 0.86" Length = 2.4" Weight = 120 g

REFEREN

Tubing Reconfigured within Housing to Bypass Actuator, Resulting in Open Tubing Entire Length of Blade

Pneumatic Power Harvesting

- Variable resistor at generator output used to determine maximum electrical power output
- Maximum of 0.75 Watts can be harvested for given generator size
- Generator type/design can likely be optimized to generate higher power outputs given rotor RPM and radius (~3 Watts)

Conclusions

NASA Aeronautics Research Institute

- Successful experimental demonstration of a full-scale, centrifugally powered pneumatic actuator
 - Centrifugally generated pressures used for actuation
 - Piezoelectric valves operated successfully under 500 g's CF
 - Higher frequency and multi-frequency control system demonstrated
 - Potential to outperform other on-blade actuation designs
 - Very low complexity, low weight, low power actuation solution
- Experimental demonstration of centrifugal power harvesting
 - In current full-scale test, 750 mW could be continually harvested
 - Sufficient power to run actuator micro-valves
 - Invercon will build on technologies demonstrated in Phase I

Phase II Goal: Self-powered, wirelessly controlled, centrifugally powered actuator that requires no slip ring

Dissemination / Distribution

- Paper abstract submitted to American Helicopter Society's Annual Technical Forum
- Invercon currently working Sikorsky on related NASA NFAC wind tunnel test in 2014
 - Pneumatic MiTEs
 - Small transverse surface actuation, not flap actuation
 - Sikorsky active rotor team briefed on project progress
- Invercon currently in talks to license pneumatic flap actuator technology to Bell Helicopter
 - Bell interested in incorporating pneumatic diaphragm technology in future active rotor vehicles
 - Advocates of Invercon's proposed Phase II work

Outline

- **☑** Background
- **☑** The Innovation:
 - Centrifugally Powered Pneumatic Actuators

- Planned Future Work

Future Work: Self-powered, Wirelessly

Controlled Actuation System for Rotorcraft

- Improve actuator high frequency performance
- Introduce piloted valve design for flow amplification

Future Work: Self-powered, Wirelessly Controlled Actuation

System for Rotorcraft

Future Work: Self-powered, Wirelessly Controlled Actuation

System for Rotorcraft

Future Work: Self-powered, Wirelessly Controlled Actuation

System for Rotorcraft

NASA Aeronautics Research Institute

Full-scale Experimental Validation of Dynamic, Centrifugally Powered, Pneumatic Actuators for Active Rotor Blade Surfaces

Questions?